Grid energy storage (also called large-scale energy storage) refers to the methods used to store electricity on a large scale within an electrical power grid. Electrical energy is stored during times when production (from power plants) exceeds consumption and the stores are used at times when consumption exceeds production. In this way, electricity production need not be drastically scaled up and down to meet momentary consumption – instead, production is maintained at a more constant level. This has the advantage that fuel-based power plants (i.e. coal, oil, gas) can be more efficiently and easily operated at constant production levels.
In particular, the use of grid-connected intermittent energy sources such as photovoltaics and wind turbines can benefit from grid energy storage. Intermittent energy sources are by nature unpredictable – the amount of electrical energy they produce varies over time and depends heavily on random factors such as the weather. In an electrical power grid without energy storage, energy sources that rely on energy stored within fuels (coal, oil, gas) must be scaled up and down to match the rise and fall of energy production from intermittent energy sources (see load following power plant).
Thus, grid energy storage is one method that the operator of an electrical power grid can use to adapt energy production to energy consumption, both of which can vary randomly over time. This is done to increase efficiency and lower the cost of energy production, and/or to facilitate the use of intermittent energy sources.
An alternate approach to grid energy storage is the smart grid. The current power grid is designed to have generation sources respond on-demand to user needs, while a smart grid can be designed so that usage varies on-demand with production availability from intermittent power sources such as wind and solar. End-user loads can be actively shed by the utility during peak usage periods, or the cost per kilowatt can dynamically vary between peak and non-peak periods to encourage turning off non-essential high power loads.
Contents |
Battery storage was used in the early days of direct-current electric power networks, and is appearing again. Battery systems connected to large solid-state converters have been used to stabilize power distribution networks. For example in Puerto Rico a system with a capacity of 20 megawatts for 15 minutes is used to stabilize the frequency of electric power produced on the island. A 27 megawatt 15 minute nickel-cadmium battery bank was installed at Fairbanks Alaska in 2003 to stabilize voltage at the end of a long transmission line.[1] Many "off-the-grid" domestic systems rely on battery storage, but storing large amounts of electricity in batteries or by other electrical means has not yet been put to general use.
Batteries are generally expensive, have high maintenance, and have limited lifespans, mainly due to pure chemical crystals that form inside the cells during the charge and discharge cycles. These crystals usually can not be re-dissolved back into the electrolyte. They can grow large enough to apply significant mechanical pressure to interior structures inside the battery to bend plates, bulge battery casings, and short out individual cells.
One possible technology for large-scale storage are large-scale flow batteries and liquid metal batteries.[2] Sodium-sulfur batteries could also be inexpensive to implement on a large scale and have been used for grid storage in Japan and in the United States [1]. Vanadium redox batteries and other types of flow batteries are also beginning to be used for energy storage including the averaging of generation from wind turbines. Battery storage has relatively high efficiency, as high as 90% or better. The world's largest battery is in Fairbanks, Alaska, composed of Ni-Cd cells.[3]
Rechargeable flow batteries can be used as a rapid-response storage medium.[4] Vanadium redox flow batteries are currently installed at Huxley Hill wind farm (Australia), Tomari Wind Hills at Hokkaidō (Japan), as well as in other non-wind farm applications. A further 12 MW·h flow battery is to be installed at the Sorne Hill wind farm (Ireland).[5] These storage systems are designed to smooth out transient fluctuations in wind energy supply. The redox flow battery mentioned in the first article cited above has a capacity of 6 MW·h, which represents under an hour of electrical flow from this particular wind farm (at 20% capacity factor on its 30 MW rated capacity).
Hydrogen Bromide has been proposed for use in a utility-scale flow-type battery.[6]
Another available way to store electric energy in batteries is to use lithium iron phosphate (LiFePO4) battery. They can be used for different purposes. Available power per unit changes between 100kWh up to 2MWh. Units could be connected in parallel, so there is no upper limit for capacity.
Companies are researching the possible use of Electric Vehicles for meeting peak demand. A parked and plugged-in EV could sell the electricity from the battery during peak loads and charge either during night (at home) or during off-peak.[7]
If plug-in hybrid and/or electric cars are mass-produced[8][9][10] these mobile energy sinks could be used for their energy storage capabilities. Vehicle-to-grid technology can be employed, turning each vehicle with its 20 to 50 kW·h battery pack into a distributed load-balancing device or emergency power source. This represents 2 to 5 days per vehicle of average household requirements of 10 kW·h per day, assuming annual consumption of 3650 kW·h. This quantity of energy is equivalent to between 40 and 300 miles (64 and 480 km) of range in such vehicles consuming 0.5 to 0.16 kW·h per mile. These figures can be achieved even in home-made electric vehicle conversions. Some electric utilities plan to use old plug-in vehicle batteries (sometimes resulting in a giant battery) to store electricity[11][12] However, a large disadvantage of using vehicle to grid energy storage is the fact that each storage cycle stresses the battery with one complete charge-discharge cycle.[8] Conventional (cobalt-based) lithium ion batteries break down with the number of cycles - newer li-ion batteries do not break down significantly with each cycle, and so have much longer lives.
Another grid energy storage method is to use off-peak or renewably generated electricity to compress air, which is usually stored in an old mine or some other kind of geological feature. When electricity demand is high, the compressed air is heated with a small amount of natural gas and then goes through turboexpanders to generate electricity.[13]
Mechanical inertia is the basis of this storage method. A heavy rotating disc is accelerated by an electric motor, which acts as a generator on reversal, slowing down the disc and producing electricity. Electricity is stored as the kinetic energy of the disc. Friction must be kept to a minimum to prolong the storage time. This is often achieved by placing the flywheel in a vacuum and using magnetic bearings, tending to make the method expensive. Larger flywheel speeds allow greater storage capacity but require strong materials such as steel or composite materials to resist the centrifugal forces. The ranges of power and energy storage technically and economically achievable, however, tend to make flywheels unsuitable for general power system application; they are probably best suited to load-leveling applications on railway power systems and for improving power quality in renewable energy systems. Applications that use flywheel storage are those that require very high bursts of power for very short durations such as tokamak and laser experiments where a motor generator is spun up to operating speed and is partially slowed down during discharge. Flywheel storage is also currently used to provide uninterruptible power supply systems (such as those in large datacenters) for ride-through power necessary during transfer[14] – that is, the relatively brief amount of time between a loss of power to the mains and the warm-up of an alternate source, such as a diesel generator.
This potential solution has been implemented by EDA[15] in the Azores on the islands of Graciosa and Flores. This system uses an 18 MWs flywheel to improve power quality and thus allow increased renewable energy usage. As the description suggests, these systems are again designed to smooth out transient fluctuations in supply, and could never be used to cope with an outage of couple of days or more. The most powerful flywheel energy storage systems currently for sale on the market can hold up to 133 kW·h of energy.
Powercorp in Australia have been developing applications using wind turbines, flywheels and low load diesel (LLD) technology to maximise the wind input to small grids. A system installed in Coral Bay, Western Australia, uses wind turbines coupled with a flywheel based control system and LLDs to achieve better than 60% wind contribution to the town grid.
The Gerald R. Ford class aircraft carrier will use flywheels to accumulate energy from the ship's power supply, for rapid release into the Electromagnetic Aircraft Launch System. The shipboard power system cannot on its own supply the high power transients necessary to launch aircraft.
Hydrogen is also being developed as an electrical energy storage medium.[8] See hydrogen storage. Hydrogen is produced (presumably using electrical energy and/or heat), then perhaps compressed or liquefied, stored, and then converted back to electrical energy and/or heat. Hydrogen can be used as a fuel for portable (vehicles) or stationary energy generation. Compared to pumped water storage and batteries, hydrogen has the advantage that it is a high energy density, amassable fuel.
Hydrogen can be produced either by reforming natural gas with steam or by the electrolysis of water into hydrogen and oxygen (see hydrogen production). Reforming natural gas produces carbon dioxide as a by-product. High temperature electrolysis and high pressure electrolysis are two techniques by which the efficiency of hydrogen production may able to be increased. Hydrogen is then be converted back to electricity in an internal combustion engine, or a fuel cell which convert chemical energy into electricity without combustion, similar to the way the human body burns fuel.
The AC-to-AC efficiency of hydrogen storage has been shown to be in the range of 20-25%,[16] rendering hydrogen storage unsuitable for anything but special (mobile) applications. The main drawback is the high number of energy conversions required, compared to other storage techniques. In effect, a hydrogen storage businessman would have to sell the energy he bought for four times the buy price (on the same market).
The equipment necessary for hydrogen energy storage includes an electrolysis plant, hydrogen compressors or liquifiers, and storage tanks.
Biohydrogen is a process being investigated for producing hydrogen using biomass.
Micro combined heat and power (microCHP) can use hydrogen as a fuel.
Some nuclear power plants may be able to benefit from a symbiosis with hydrogen production. High temperature (950 to 1,000 °C) gas cooled nuclear generation IV reactors have the potential to electrolyze hydrogen from water by thermochemical means using nuclear heat as in the sulfur-iodine cycle.
A community based pilot program using wind turbines and hydrogen generators was started in 2007 in the remote community of Ramea, Newfoundland and Labrador.[17] A similar project has been going on since 2004 on Utsira, a small Norwegian island municipality.
Underground hydrogen storage is the practice of hydrogen storage in underground caverns, salt domes and depleted oil and gas fields.[8] Large quantities of gaseous hydrogen have been stored in underground caverns by ICI for many years without any difficulties.[18]
In 2008 world pumped storage generating capacity was 104 GW,[19] while other sources claim 127 GW, which comprises the vast majority of all types of grid electric storage - all other types combined are some hundreds of MW.[20]
In many places, pumped storage hydroelectricity is used to even out the daily generating load, by pumping water to a high storage reservoir during off-peak hours and weekends, using the excess base-load capacity from coal or nuclear sources. During peak hours, this water can be used for hydroelectric generation, often as a high value rapid-response reserve to cover transient peaks in demand. Pumped storage recovers about 75% of the energy consumed, and is currently the most cost effective form of mass power storage. The chief problem with pumped storage is that it usually requires two nearby reservoirs at considerably different heights, and often requires considerable capital expenditure.[21]
Pumped water systems have high dispatchability, meaning they can come on-line very quickly, typically within 15 seconds,[22] which makes these systems very efficient at soaking up variability in electrical demand from consumers. There is over 90 GW of pumped storage in operation around the world, which is about 3% of instantaneous global generation capacity. Pumped water storage systems, such as the Dinorwig storage system, hold five or six hours of generating capacity,[22] and are used to smooth out demand variations.
Another example is the Tianhuangping Pumped-Storage Hydro Plant in China,[23] which has a reservoir capacity of eight million cubic meters (2.1 billion U.S. gallons or the volume of water over Niagara Falls in 25 minutes) with a vertical distance of 600 m (1970 feet). The reservoir can provide about 13 GW·h of stored gravitational potential energy (convertible to electricity at about 80% efficiency), or about 2% of China's daily electricity consumption.[24]
A new concept in pumped-storage is utilizing wind energy or solar power to pump water. Wind turbines or solar cells that direct drive water pumps for an energy storing wind or solar dam can make this a more efficient process but are limited. Such systems can only increase kinetic water volume during windy and daylight periods.
Hydroelectric dams with large reservoirs can also be operated to provide peak generation at times of peak demand. Water is stored in the reservoir during periods of low demand and released through the plant when demand is higher. The net effect is the same as pumped storage, but without the pumping loss. Depending on the reservoir capacity the plant can provide daily, weekly, or seasonal load following.
Many existing hydroelectric dams are fairly old (for example, the Hoover Dam was built in the 1930s), and their original design predated the newer intermittent power sources such as wind and solar by decades. A hydroelectric dam originally built to provide baseload power will have its generators sized according to the average flow of water into the reservoir. Uprating such a dam with additional generators increases its peak power output capacity, thereby increasing its capacity to operate as a virtual grid energy storage unit.[25][26] The United States Bureau of Reclamation reports an investment cost of $69 per kilowatt capacity to uprate an existing dam,[25] compared to more than $400 per kilowatt for oil-fired peaking generators. While an uprated hydroelectric dam does not directly store excess energy from other generating units, it behaves equivalently by accumulating its own fuel - incoming river water - during periods of high output from other generating units. Functioning as a virtual grid storage unit in this way, the uprated dam is one of the most efficient forms of energy storage, because it has no pumping losses to fill its reservoir, only increased losses to evaporation and leakage. A dam which impounds a large reservoir can store and release a correspondingly large amount of energy, by raising and lowering its reservoir level a few meters.
Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of direct current in a superconducting coil which has been cryogenically cooled to a temperature below its superconducting critical temperature. A typical SMES system includes three parts: superconducting coil, power conditioning system and cryogenically cooled refrigerator. Once the superconducting coil is charged, the current will not decay and the magnetic energy can be stored indefinitely. The stored energy can be released back to the network by discharging the coil. The power conditioning system uses an inverter/rectifier to transform alternating current (AC) power to direct current or convert DC back to AC power. The inverter/rectifier accounts for about 2–3% energy loss in each direction. SMES loses the least amount of electricity in the energy storage process compared to other methods of storing energy. SMES systems are highly efficient; the round-trip efficiency is greater than 95%. The high cost of superconductors is the primary limitation for commercial use of this energy storage method.
Due to the energy requirements of refrigeration, and the limits in the total energy able to be stored, SMES is currently used for short duration energy storage. Therefore, SMES is most commonly devoted to improving power quality. If SMES were to be used for utilities it would be a diurnal storage device, charged from base load power at night and meeting peak loads during the day.
For superconducting magnetic energy to become practical the technical challenges have to be solved.
Molten salt is used to store heat collected by a solar power tower so that it can be used to generate electricity in bad weather or at night. Thermal efficiencies over one year of 99% have been predicted.[27]
Off-peak electricity can be used to make ice from water, and the ice can be stored until the next day, when it is used to cool either the air in a large building, thereby shifting that demand off-peak, or the intake air of a gas turbine generator, thus increasing the on-peak generation capacity.
The second prototype of Isentropic Pumped Heat Electricity Storage System was a success proving the electricity-in to electricity-out (round trip efficiency) in the range of 72 to 85%. The isentropic PHES system utilises a highly reversible heat engine/heat pump to pump heat between two storage vessels.
Generally speaking, energy storage is economical when the marginal cost of electricity varies more than the costs of storing and retrieving the energy plus the price of energy lost in the process. For instance, assume a pumped-storage reservoir can pump to its upper reservoir water equivalent to 1,200 MW·h during the night, for $15 per MW·h, at a total cost of $18,000. The next day, all of the stored energy can be sold at the peak hours for $40 per MW·h, but from the 1,200 MW·h pumped 50 were lost due to evaporation and seeping in the reservoir. 1,150 MW·h are sold for $46,000, for a final profit of $28,000.
However, the marginal cost of electricity varies because of the varying operational and fuel costs of different classes of generators. At one extreme, base load power plants such as coal-fired power plants and nuclear power plants are low marginal cost generators, as they have high capital and maintenance costs but low fuel costs. At the other extreme, peaking power plants such as gas turbine natural gas plants burn expensive fuel but are cheaper to build, operate and maintain. To minimize the total operational cost of generating power, base load generators are dispatched most of the time, while peak power generators are dispatched only when necessary, generally when energy demand peaks. This is called "economic dispatch".
Demand for electricity from the world's various grids varies over the course of the day and from season to season. For the most part, variation in electric demand is met by varying the amount of electrical energy supplied from primary sources. Increasingly, however, operators are storing lower-cost energy produced at night, then releasing it to the grid during the peak periods of the day when it is more valuable.[28] In areas where hydroelectric dams exist, release can be delayed until demand is greater; this form of storage is common and can make use of existing reservoirs. This is not storing "surplus" energy produced elsewhere, but the net effect is the same - although without the efficiency losses. Renewable supplies with variable production, like wind and solar power, tend to increase the net variation in electric load, increasing the opportunity for grid energy storage.
The demand for electricity from consumers and industry is constantly changing, broadly within the following categories:
There are currently three main methods for dealing with changing demand:
The problem with relying on these last two methods in particular is that they are expensive, because they leave expensive generating equipment unused much of the time, and because plants running below maximum output usually produce at less than their best efficiency. Grid energy storage is used to shift load from peak to off-peak hours. Power plants are able to run closer to their peak efficiency for much of the year.
Optimal supply-demand leveling strategies depend on the supply-demand mismatch: daily (diurnal) storage must be high efficiency, while seasonal storage would need very low storage costs.
The only way to deal with varying electrical loads is to decrease the difference between generation and demand. If this is done by changing loads it is referred to as demand side management (DSM). For decades, utilities have sold off-peak power to large consumers at lower rates, to encourage these users to shift their loads to off-peak hours, in the same way that telephone companies do with individual customers. Usually, these time-dependent prices are negotiated ahead of time. In an attempt to save more money, some utilities are experimenting with selling electricity at minute-by-minute spot prices, which allow those users with monitoring equipment to detect demand peaks as they happen, and shift demand to save both the user and the utility money. Demand side management can be manual or automatic and is not limited to large industrial customers. In residential and small business applications, for example, appliance control modules can reduce energy usage of water heaters, air conditioning units, refrigerators, and other devices during these periods by turning them off for some portion of the peak demand time or by reducing the power that they draw. Energy demand management includes more than reducing overall energy use or shifting loads to off-peak hours. A particularly effective method of energy demand management involves encouraging electric consumers to install more energy efficient equipment. For example, many utilities give rebates for the purchase of insulation, weatherstripping, and appliances and light bulbs that are energy efficient. Some utilities subsidize the purchase of geothermal heat pumps by their customers, to reduce electricity demand during the summer months by making air conditioning up to 70% more efficient, as well as to reduce the winter electricity demand compared to conventional air-sourced heat pumps or resistive heating.[30] Companies with factories and large buildings can also install such products, but they can also buy energy efficient industrial equipment, like boilers, or use more efficient processes to produce products. Companies may get incentives like rebates or low interest loans from utilities or the government for the installation of energy efficient industrial equipment.
This is the area of greatest success for current energy storage technologies. Single-use and rechargeable batteries are ubiquitous, and provide power for devices with demands as varied as digital watches and cars. Advances in battery technology have generally been slow, however, with much of the advance in battery life that consumers see being attributable to efficient power management rather than increased storage capacity. Portable consumer electronics have benefited greatly from size and power reductions associated with Moore's law. Unfortunately, Moore's law does not apply to hauling people and freight; the underlying energy requirements for transportation remain much higher than for information and entertainment applications. Battery capacity has become an issue as pressure grows for alternatives to internal combustion engines in cars, trucks, buses, trains, ships, and airplanes. These uses require far more energy density (the amount of energy stored in a given volume or weight) than current battery technology can deliver. Liquid hydrocarbon fuel (such as gasoline/petrol and diesel), as well as alcohols (methanol, ethanol, and butanol) and lipids (straight vegetable oil, biodiesel) have much higher energy densities.
There are synthetic pathways for using electricity to reduce carbon dioxide and water to liquid hydrocarbon or alcohol fuels.[31] These pathways begin with electrolysis of water to generate hydrogen, and then reducing carbon dioxide with excess hydrogen in variations of the reverse water gas shift reaction. Non-fossil sources of carbon dioxide include fermentation plants and wastewater treatment plants. Converting electrical energy to carbon-based liquid fuel has potential to provide portable energy storage usable by the large existing stock of motor vehicles and other engine-driven equipment, without the difficulties of dealing with hydrogen or another exotic energy carrier. These synthetic pathways may attract attention in connection with attempts to improve energy security in nations that rely on imported petroleum, but have or can develop large sources of renewable or nuclear electricity, as well as to deal with possible future declines in the amount of petroleum available to import.
Because the transport sector uses the energy from petroleum very inefficiently, replacing petroleum with electricity for mobile energy will not require very large investments over many years.
Virtually all devices that operate on electricity are adversely affected by the sudden removal of their power supply. Solutions such as UPS (uninterruptible power supplies) or backup generators are available, but these are expensive. Efficient methods of power storage would allow for devices to have a built-in backup for power cuts, and also reduce the impact of a failure in a generating station. Examples of this are currently available using fuel cells and flywheels.
|
|